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The structure of the pe'fj.(‘)u Ol a paramewic s solution of a certain nonlinear autonomous

systemn (which is in a sense a generalization of Liapunov systems) is investigated, The
existence of a periodic solution is due to the existence of the necessary number of first
integrals, Formulas for approximate calculation of the period are derived for cases where
such a solution can be said to exist, The results can be applied to the study of periodic
solutions of systems close to that analyzed here under principal-resonance conditions

(in the sense of Malkin).

1, Formulation of the problem, We consider the system
dxi/dt:ailxl"]_---+ainxn+X‘l(‘r1~,-'-1xn) i=1,...,n {1.1)
where a;;are constants and X ;are analytic nonlinear functions of the veu'iables:r1 vees .
Let us assume that Eq, .
4 |ai;—80[ =0 (1.2)

has / zero roots associated with / groups of solutions, two roots -4 A,]/— 1 ,and no
roots which are multiples of 4 A,l/ —1.

Applying a linear nonsingular transformation with constant coefficients, we transform
system (1, 1) into [1 and 2]

dujldt=U; dy/dt= —hz+Y, dz/dt=Ay-+ Z
dv; | dt = by, + o4 by, + V (1.3}
G=1,....Li=1...,mm+1+4+2=n)

where U;, Y, Z, V,; are analytic nonlinear functions of the variables u,,..., u;, v, z,

Vyyeeey Um,and where the constants b are such that there are no zero roots or multiples
of - xl/— 1 among the roots of the equation lb ,Jp,

Let us assume that systemn (1,3) has / 4~ 1 analytic first 1ntegrals
M; @) + M, y, z, v) = C; G=1,...,10 (1.4)
Y2+ 24 P, g, z, v) = Cin (1.5)

where M/ ; are linear independent forms of the variables u,, ..., u;; M i, P are
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terms nonlinear in u, Y, z, v. Differentiating integral (1. 5) and recalling (1. 3) , we
find that first-order terms in 4 can occur only as of the quadratic forms L,(u), L,(»)
with constant coefficients,

Since the forms M (j = 1,..., ) are independent, we can always take M; = u;,
This allows us to rewrite integrals (1.4) as

u;+ i, y, 2, )=C; (j= 1,.,1) (1.6)
where @j are terms nonlinear in u, y, 2, .

Provided integrals (1. 5), (1, 6) exist, autonomous system (1. 3) has a periodic solution
in the neighborhood of the origin ; this solution depends on [ -} 2 parameters [1 and 3],
Let us take the initial values of the critical variables u,,..., u;, ¥, 2z as these parame-
ters, (This is always possible [2]).

Let us investigate the structure of the period of the transformed solution of system
(1.3). The above results are necessary for the investigation of periodic solutions of sys-
tems close to (1, 3) under principle-resonance conditions [2], when we need to know at
least the lower-~order terms in the expansion of the period,

2, The general expression of the period., The only case which we shall
analyze in detail is that where Eq. (1, 2) has a single zero root (I = 1). Our argument
can be readily extended to the case [ >1 (see the Remark in Sect, 4),

We denote system (1, 3) and integrals (1, 5),(1.6) for I = 1 by (1.3), (4.5%), (1.6")
(system A') ,respectively,

Let us assume that the system (A') has already been transformed in accordance with
the following statement,

Lemma 2.1, System (A!) can always be transformed in such a way that the func-

tions U/, Y, Z, V;, @ vanishfor y=2=0v,=...=v,=0.
The validity of the lemma follows from analysis of the special case of a single zero
root [1].

Proof. Letus solve Egs.
—A+Y=0, MFZ=0, bu+..+bu,+V,=0
for ys (u), z4 (u), v;s (u) and make the followinf substitutions in (A?) :
Y=y +ya(e), z=u-tz ), =" 4.0 (2.1}

The identity obtained by differentiating wansformed integral (1.6') and recalling
(2. 1) implies that the new nonlinear terms Uy, Yy, Zy, ViV vanish for 4, = 2, = »,(V =
= ,,. = l}m(i) — O.

Since the transformed system has the solution
() _ z,m(l) —=0 (2.2)

.4 =

u=(j, Y1=21=0;
it follows that ¢, (u,0,..., 0) = 0. Transformed integral (1.5!) now implies that solution
(2.2) is associated with the following value of the constant C; :
C: =Y, (Cy, 0,..., 0)
Let us eliminate the variable u from (A') and apply integral (1.6%). This yields the
system dy Jdt = — Az+ Y, dz/dt = hy+ Z,
dv; [dt = buvs 4. .. + bimVm + Vi (i=1,...,m) (2.3)

and the corresponding integral

y2+ ZZ+ w* = Cay CS = C2 - ‘llJ (Clw 07-'-v0) (2‘4)
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The asterisks in (2. 3),(2.4) denote functions analytic in y, z, vy,..., v C; which
vanish (by Lemma 2,1) for y = 2= vy = ... = v, = 0,

The functions Y, Z,, V,, can contain first-order terms in ¥, 2z, 1,..+s Um
whose coefficients are analytic functions of C; which vanish for C; = 0. We can make
the following statement concerning the form of the function,, :

Lemma 2.2, For sufficiently small values of the constant C; the function s in (2.4)
does not contain first-order terms in Y, 2, Vp,+..y Up,.

Proof, Let Vo= Ay $ Bz + Dy .o + Dyl + - (2.9)
where the nonlinear terms have not been written out,

Let us differentiate integral (2, 4) in accordance with system (2, 3). Equating the coef-
ficients of the first powers of ¥, z, vy, ..., Uy, in the resulting identity to zero, we obtain
a homogeneous system for determining the unknowns 4, B, Dy,..., D,,. The determinant
of this system is a continuous function of C; which becomes the nonzero quantity A%[b;;|
for ¢; = 0. Then for sufficiently small C; we have 4 =B = Dy;=...= D, =0 in
(2. 5).

Making use of Lemmas 2, 1 and 2, 2, we can obtain the expression for the period of the
solution of system(2.3), (2.4),and hence for the period of the solution of system (A?!) in
the usual way [1 and 2], Let us outline the derivation of the formula for the period,
omitting the detailed expressions given in {1 and 2].

We begin by setting

in (2. 3) ,(2.4). y=pcos?, z=psin®, p=opx (t=1,., m (2.6)

For sufficiently small p, x we canset ¢, = C?'in(2.4) and (recalling Lemma 2, 2)
solve integral (2, 4) for p
p=+C[ + G (Cy, %, ®) + CG: (C, Cy,y %, B)] 2.7
where G,, G: are analytic functions of their arguments and are periodic in 4; G,
(0, 0,9)=10.
Making use of (2, 7), we can replace system (2, 3) by the mth order system
1

dxi_—_
a8 T A

(by; +dy; (Cr, M) x; + C:K, " (C1, 8) 4 CKP (C, . Cu®)

s

1

Il

7
(i=1,...,m (2.8)
where d;; (d;; (0, ¢) = 0), K@, K are analytic functions of their arguments and
are periodic in 9.
For sufficiently small values of the constants C,, C system (2, 8) has a periodic solu-
ti f f . ‘-
fonofthe form 2] (€L C. B, %0, 0, 9)=0 (=1,....m) 2.9)

The following formula is then valid for the period of the solution of system (2, 8), and

therefore for the period of the solution of system (A') (see [1], p, 249):
on

T— S pdd (2.10)
0

Ao+ (Z,)cos® — (Y,)sin &

where the parentheses indicate successive substitutions in accordance with (2, 8), (2. 7),
(2.9).

From (2, 10) we obtain the period T =2a01[1 4 p(C1) -+ ¢ (C1, C)]

POI=D) pici, =D gojiClices (2-11)

i1 =1 k=20
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where .Pi, ¢25.1 are constants, and where ¢ occurs in even powers only [1].
Recalling integrals (1,6),(2,4) and setting
Ci==a49@(ab,e), C=C:—v((1,0,...0), Coa==b2+ 2+ (a,b,c) (2.12)
in (1, 6)(here a, b, c are the initial values of the variables u, y, z), we obtain the
required expression for the period T (g, b, ¢) of the solution of system (A4%).
We note that the expansion of the period 7 (a, b, ¢} can begin with terms of any order
(the odd order is introduced by the constant Cj).
From,now on (Sects, 3, 4) we shall consider system (A?)without the variables vy,..., Uy
du [ dt=U (u, y, 32), dy/dt= — dz+ Y (u, y, 2), dz/dt= Ay + Z (u, y, 2)
(2.13)
uto@y==C (), P+2+9 @y )=C (b) (214

This does not reduce the generality of the problem, since system (A"} can always be
reduced to the form (2, 13),(2. 14) (e, g, see [2]).

Let us set out the rules for computing the lower-order terms in the expansion of the
period T (a, b, ).

with the integrals

8, The function p(C:) in (2.11), Let us consider the integrand in (2, 10)
after making substitutions (2, 6), (2. 7).(2. 9) and dividing through by p' in the numerator
and denominator,

The function p (€4} in (2,11) is due to the presence of terms linear in y, z in Yy, Z,
(system (2, 3) without the variables v;) which in turn consist of products of the form
ufy, Wz (i>1)inY, z (system (2, 13) after the elimination of » by means of integral

{2,14a)).
Let us assume that the functions Z, Y contain the terms
N aiuiy—§—8iuiz, Tiui?./’i_éi uiz i1 (31)
respectively,
After the necessary operations, expressions (3, 1) yield the following value of the inte-
grand in (2.10): 3 4 [o, cos? & + (8, — 7,) sin & cos § — 8, sin? 8] €1} (3.2)

where we have omitted terms dependent on .C and also terms dependent on powers of
C, other than i.

Dividing in (3.2) and integrating from 0 to 2x, we obtain the value of p (Cy) in(2.11),

All this implies the validity of the following statement,

Lemma 3,1, a)Let no terms of the form (3. 1) be present in the functjons Y, Z
{system (2. 13)) alternatively, if such terms are present, let Y contain only vy, u’y, and
Z only B;u *; . In the latter case let y, == B, for all #. This means that p (¢;) = 0 in
(2.11),

b) Let Z contain the term a, u"y, and Y the term &, u"z, o), = 8, and let one of
the conditions of Par,(a) above hold for all the terms (3,1) in Y, Z forl « i < k. Then

PCY =@M @, —a) G+ (o) " (3.3)

c) If Z contains the term B, u°z, and Y the term Yo 1%, Bs —;’: Ys and let one of the
requirements of Par, (a) be fulfilled for all terms (3, 1) in Y, Z for 1i<o, o<

<.2Cf . Then P (Cl) — (‘3}»2)‘1 (Bc . Tc)? 0126 4(-- .) 012671 S (34)

4, The function ¢ (C;, C)in (2, 11), We shall limit ourselves to the com-
putation of the coefficients gox,q (k¥ > 1). These coefficients consist solely of terms
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which are free in €, in expression (2, 7) for p. Let us consider a particular case,

Let the functions @, ¥ in (2, 14) vanish for & = 0, Differentiating integrals (2, 14} in
accordance with system (2, 13}, we find that T {0, y, 2) = 0, and that the functions ¥,
Z can contain terms independent of « only if they satisfy Eq,

2 Y 4+ 2Z=0 (4.1)

Let Y contain the terms
— syzly’ — septy 4.2
and 2 the terms vy TRy “.2
5204 yf*l'—f— szziy? {4.3)

satisfying condition (4, 1),
In this particular case the functions { in (2,4) and Gy, Gy in (2. 7) (without the vari-
ables v;, y;.respectively) vanish for Cy == 0.
Expressions {4, 2),{4, 3) give us the value of the integrand in (2.10),
[h - (s sin™1 § cos’ & - sa5in’ § cosT2 9y ¢TH 12 {4.4)

where we have omitted terms which depend on €, and also terms which depend on powers
of ¢ different from i - j — 1.

Dividing in (4. 4) and integrating over & from 0 to2x,we obtain the value of the co-
efficient ¢or p in {2, 11), This means that the following lemmia is valid,

Lemma 4,1, a) Let the funcions ¢, ¢, ¥, Z in {2, 13),(2. 14) vanish for u = 0.
Then dax.0 — Ok= '1,2,..‘.) in (2,11).

b) Let the functions g, 4 vanish for # == () and let the lowest-order terms in the funee
tions Y, Z be (4,2),(4. 9), The first nonzero coefficient ¢ax 0 in (2, 11) is then given by

an
Tiir0 =35m0 S sin® @ cos’ B dd (4.5)
@
if ¢ is 0odd and ;7 is evem on
§ . e
Giojro=— 15 S sin' & cos?1 9 40 4.6)
if iisevenand; is odd; , o
i ¢ . . .
By (ied-13,0 = S0 S (s sin® D § cos¥ & L 5,250 § cos? TV 9y 29 “n

if {i -+ /) is even, ¢

Corollary, Ifin artempting to use Formulas (4. 5),(4.6) we find that s, =0 ot
sz = 0, respectively, then the first nonzero coefficient gy (i+;—1),0 can be found from
(4.7) by setting s; = 0 or sa == 0.

Remark, LetEq, (1.2)have I>>1 zero roots, Lemmas 2, 1,2, 2 remain valid,
Terms {3, 1) must be considered for each individual variable u,,..., u; in order to con~
struct the complete expression (3,2), Dividing in (3,2) and integrating over ¢ from 0
to 2%, we obtain the function p (Cy,..., €}) in (2.11), The function ¢. in (2, 11) depends
on (y,..., €y, €. The condition of Lemma 4, 1 must now include the requirement that the
functions @y,..., @, P, ¥, Z (O only Prscer @, P) vanish for wy = .= u; = 0.

Let us now consider some examples to iliusirate how the results of Sects, 3,4 can be
used to find the lower-order terms in the expansion of the period T {a, b, ¢}. As already
noted in Sect, 1, it is necessary to know these terms in order to investigate systems
closely resembling (1, 3).

5., Examples, 1, The system
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dufdt =2hys* (1 + u) — W, dyftd = — hs — hyz +  hyis®
has the integrals dz/de==hy — Az® {5.1)
udyz=Cy, P+ 22 + u? = ¢,
Applying formula (2, 11) and (3. 3)(where 6, = — A, a;, = 0, k = 1) and making the

substitution €, #= & -» ... according to (2, 12), we obtain

T=2ah1(1 -1
2, The system ( pat )
dujdt=uz, dy/dt= — z — yz,dz [ dt =y + y2 — 3/5ud (5.2)

has the integrals

utuy=Cy, §* + 22+ ud= (, (5.3)
Let us transform system (5. 2), (5. 3) in accordance with Lemma 2,1, To this end we
solve Eqgs, —z—yz=0,y+ P — % ud=0

for y, z as functions of u. This yields
ze (0) = 0, ye () = %2t® + ...
Making the substitutions z = z4 (u) - 21, ¥ = v« () + ¥y in (5.2),(5, 3), we obtain
dy / dt = uzy, dy, [ dt = — 2; — pyty, d5, [ dt == y; 3+ p? — 3Py
u-tuyy=Cphyl+2d+ 3l Put=20C
From formula (3, 3) we find that p (Cy) == 3/2 ;3 $ ..., and from formula (4, 7), where
p==h =t =0t (G O = C ...
Equating the functions p (C,) and ¢ (Cy, C) and making substitution (2, 12), we obtain
T=2n[t+Ys (4 e + ..]
3, The system
du [ dt = — y? + 22, dy [ dt = — z -+ 33 u?y, dz/dt=y—3/a utz (5.4)

has the integrals
n-pyz=Cy, PP+ 22+ 3=
From formula (3, 4), where \y; = %3, Bs = — ¥z, 0= 2, we obtainp (C})="/,C4->...
Expression (2. 11) yields g = — 3/, €,C*+.... Equating the functions p (€, 9 {C,0)
and making substitution (2. 12), we obtain
r=2n [ —% a @+ +..]

The author is grateful to S, N, Shimanov for his useful remarks,
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