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system (which is in a sense a generalization of Liapunov systems) is investigated. The 
existence of a periodic solution is due to the existence of the necessary number of first 
integrals. Formulas for approximate calculation of the period are derived for cases where 
such a solution can be said to exist. The results can be applied to the study of periodic 
solutions of systems close to that analyzed here under principal-resonance conditions 

(in the sense of Malkin). 

1, Formulation of the problem, We consider the system 

dxi / dt = ailxl + . . . + a,$,, + & (519 . . . , xn) (i = 1, . . . , n) (1 .I) 
where aijare constants and Xi are analytic nonlinear functions of the variablesrr,, . . , 5,. 

Let us assume that Eq. 
1 czij - 6ijp 1 = 0 (1 .ay 

has 2 zero roots associated with l groups of solutions, two roots f hl/- 1 , and no -- 
roots which are multiples of f “I/ -1. 

Applying a linear nonsingular transformation with constant coefficients, we transform 

system (1.1) into [l and 21 

duj [ dt = Uj, dy / dt = - AZ + Y, dz / dt = hy + Z 

dq / dt = bilvl + . ..+ big,,, + Vi (1.3) 
(j=i ,..., I; i=l,..., m, n~+L+2=n) 

where UI! Yt Z7 Vi are analytic nonlinear functions of the variables ur:,. .: Ui: y: z: 
2’1, . . . ) v~, and where the constants bij are such that there are no zero roots or multiples 
of t hv--- 1 among the roots of the equation 1 bij - &jpl= 0 . 

Let us assume that system (1.3) has I + 1 analytic first integrals 

1Mj (u) + Mj(l) (U, y, z, U) = cj (j= 1, . . . , 1) (1.4) 

YZ + zz 4 S(w y, z, v) = CiSl (1.5) 
where &lj are linear independent forms of the variables ur, . . . , ui; d!‘lj(i), I) are 
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terms nonlinear in U, y, z, 0. Differentiating integral (1.5) and recalling (1.3) , we 

find that first-order terms in 9 can occur only as of the quadratic forms &(u), L,(o) 
with constant coefficients. 

Since the forms bg, (j = ‘l,..,, 1) are independent, we can always take Mj G uj, 
This allows us to rewrite integrals (1.4) as 

uj + ‘pj(“* Y, z, v) = Cj (i = 1 ,.a*, I!) (1.6). 
where cp~ are terms nonlinear in u, y, z, V. 

Provided integrals (1. 5). (1.6) exist, autonomous system (1.3) has a periodic solution 
in the neighborhood of the origin ; this solution depends on 2 + 2 parameters [l and 31. 

Let us take the initial values of the critical variables Q,..., ui, y, z as these parame- 
ters. (This is always possible [2]). 

Let us investigate the structure of the period of the transformed solution of system 
(1.3). The above results are necessary for the investigation of periodic solutions of sys- 
tems close to (1.3) under principle-resonance conditions [Z], when we need to know at 

least the lower-order terms in the expansion of the period. 

2, The gsnsrbl sxprsrlian of the psriod. The only case which weshall 
analyze in detail is that where Eq. (1.2) has’ a single zero root (I = 1). Our argument 
can be readily extended to the case I > 1 (see the Remark in Sect.4). 

We denote system (1.3) and integrals (1.5),(1.6) for 1 = 1 by(1.3l), (1.5’), (1.6’) 
(system A’) , respectively. 

Let us assume that the system (A’) has already been transformed in accordance with 
the following statement. 

Le m ma 2.1. System (Ai) can always be transformed in such a way that the func- 

tions U, Y, 2, vi, cp vanishfor y=~=vl=...=~~=Q. 
The validity of the lemma follows from analysis of the special case of a single zero 

root Cl]. 
Proof. Let us solve Eqs. 

--hz + Y = 0, hy t: z = 0, b.ilVl + -a* + &mum $ V$ = 0 

for y* (u), z* (u), vi* (u) and make the followinf substitutions in (Al) : 

Y = Yl + Y*(U), z = Zl + z* (u)* Vk = vp + V,,* (u) (2.~1 

The identity obtained by differentiating transformed integral (1.61) and recalling 

(2.1) implies that the new nonlinear terms U1, Y1, ZI, Vi(*) vanish for y1 = z1 = vl(*’ = 

= . . . = L’m Ii) Z 0. 

Since the transformed system has the solution 

u= Cl, IJr Z z1 Z U,(l) - -.. .-=v, (1) = 0 (2.2) 

it follows that ‘pl (u, O,..., 0) = 0. Transformed integral (1.51) now implies that solution 
(2.2) is associated with the following value of the constant CZ : 

cz = $1 (Cl, o,..., 0) 
Let us eliminate the variable u from (A’) and apply integral (1 .Si). This yields the 

system 
dy ,’ dt = - AZ + Y,, dz / dt = hy + 2, 

d~i / dt = bilul+ . - . + bimvm + vt* (i = 1,. . , m) (2.3) 

and the corresponding integral 

yz + zz + $I* = CB, c, = c, - $ (C,, o,..., 0) (2.4) 
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The asterisks in (2.3),(2.4) denote functions analytic in y, z, v,,..., v,, C, which 
vanish (by Lemma 2.1) for y = z = u1 = . . . = z,,, = 0, 

The functions Y,, Z,, Vi, can contain first-order terms in y, 2, ZJ1,..., 27, 
whose coefficients are analytic functions of Crwhich vanish for C, = 0. We can make 

the following statement concerning the form of the function** : 
L e m m a 2.2. For sufficiently small values of the constant C, the function 9. in (2.4) 

does not contain first-order terms in y, 2, 21r, -.., v,. 

Proof. Let $+ = Ay + Bz -p Dlvl + . . . + D,,,%, -P ... (2.5) 

where the nonlinear terms have not been written out. 
Let us differentiate integral (2.4) in accordance with system (2.3). Equating the coef- 

ficients of the first powers of y, z, vr, . . . . urn in the resulting identity to zero, we obtain 

a homogeneous system for determining the unknowns A, B, Dir..., D,. The determinant 

of this system is a continuous function of C1 which becomes the nonzero quantity Plbijl 

for C, = 0 . Then for sufficiently small C, we have A = B = D, = . . . = D, = 0 in 

(2.5). 
Making use of Lemmas 2.1 and 2.2, we can obtain the expression for the period of the 

solution of system(2.3). (2,4),and hence for the period of the solution of system (Ai) in 
the usual way [l and 23. Let us outline the derivation of the formula for the period, 

omitting the detailed expressions given in [l and 21. 

We begin by setting 

in (2.3) , (2.4). 
y= p cos#, z= psinti, vi = PXi (f= I,..., m) (2.9) 

For sufficiently small p, X we can set C3 = C* in (2.4) and (recalling Lemma 2.2) 

solve integral (2.4) for o 

P = _t C 11 + G, (C,, XI 6) + CG2 (C, C,, x1 WI (2.7) 
where G,, GS are analytic functions of their arguments and are periodic in 6; G, 

(0, 0,6) = 0. 
Making use of (2.7), we can replace system (2.3) by the mth order system 

dxi I * --- 
d0 - h 2 (brj + dij (Cl, 6)) xi + CIK~(” (CI, 8) + CKi(‘) (C* X* Cl*61 

i=l 
(i=l,..., m) (2.8) 

where dij (dij (0, 6) = 01, Ki(‘), Kita’ are analytic functions of their arguments and 
are periodic in -6. 

For sufficiently small values of the constants C,, C system (2.8) has a periodic solu- 

tion of the form I?1 x 

i 
= x (cl, c 

i 
e) 

I 9 
xt(0,0,6)=0 (i=1,...,4 (2.9) 

The following formula is then valid for the period of the solution of system (2.8). and 
therefore for the period of the solution of system (Al) (see Cl], p. 249) : 

2s 

T= 
s 

pd@ 
hp + (2,) cos f3 - (Y.) sin -3 

0 

(2.101 

where the parentheses indicate successive substitutions in accordance with (2.6), (2.7), 

(2.9). 

From (2. lo) we obtain the period T = 2,th-1 [I + p (Cl) + Q (Cl, C)] 

P (Cl) = 2 p$f, 
i>l j>l k>O 

(2.11) 
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where .Pi. Qzj,k are constants, and where C occurs in even powers Only [l]. 

Recalling integrals (1.6),(2.4) and setting 

C1 = a + cp (a, b, c), C~fCZ-*(cl,O,..-rqr d~=be+c2+1C1(a,b,c) (2.12) 

in (I.. 6)(here a, b, c are the initial values of the variables u, y, z). we obtain the 
required expression for the period T (a, b, c) of the solution of system (Al). 

We note that the expansion of the period T (a, b, c) can begin with terms of any order 
(the odd order is introduced by the constant Cl). 

Fromnow on (Sects. 3,4) we shall consider system (A’) without the variables I+,..., Lsn 

du I at= u (u, Y, 4, aY t at = - ?d + y (4 y, 4, a2 1 at = b + 2 (4 Yv 2) 
with the integrals 

(2.13) 

u -+ cp (u, Y, Z) = C1 (a), y2 + zd2 + 9 (u, y, 4 = Cn (W (2.14) 

This does not reduce the generality of the problem, since system (A’) can always be 
reduced to the form (2,13), (2.14) (e.g. see p]). 

Let us set out the rules for computing the lower-order terms in the expansion of the 
period 2’ (a, b, c)- 

3, The functfon a in (2, II), Let us consider the integrand in(2.10) 
after making substitutions (2.6). (!2.7), (2.9) and dividing through by p in the numerator 
and denominator. 

The function p (C,) in (2.11) is due to the presence of terms linear in y, z in Y,, 2, 
(system (2.3) without the variables vj) which in turn consist of products of the form 
u$, uk (i & 1) in Y, 2 (system (2.13) after the elimination of u by means of integral 

(2,14a) 1. 
Let us assume that the functions Z, Y contain the terms 

zi uzy + pi uiz, 7& + ai UiZ (i >, 1) 
respectively. 

(3.1) 

After the necessary operations, expressions (3.1) yield the following value of the inte- 

grand in (2.10): {h + [ai co9 fi + (pi - yi) sin 6 cos 6 - 6, sinz@] Cr’)-” (3.2) 

where we have omitted terms dependent on *C and also terms dependent on powers of 

C, other than i. 
Dividing in (3.2) and integrating from 0 to 2n, we obtain the value of p (C,) in(2.11). 

All this implies the validity of the following statement. 
Le mm a 3.1. a) Let no terms of the form (3.1) be present in the functions Y, 2 

(system (2.13)) ; alternatively, if such terms are present, let Y contain only +& u$, and 

Z only pi U 5 . In the latter case let yi = & for all i. This means that p (C,) E 0 in 

(2.11). 
b) Let 2 contain the term a,, &, and Y the term 6, U*Z, a,, f 6,. and let one of 

the conditions of Par.(a) above hold for all the terms (3.1) in Y, 2 for 1 Q i < h. Then 

p (Cl) = (2hj-r (6, - ClJ CP + (- * .) Clh+’ + . . (3.3) 

c) If 2 contains the term & IPZ, and Y the term y. EC”!/, f$ #= ‘r’o and let one of the 
requirements of Par. (a) be fulfilled for all terms (3.1) in I’, S for 1 < i < o, o < i < 

<2a . Then p (Cl) = (%2)-l (p, - r,)? CISD + ( * . *) CISG T l -t . . . (3.4k 

4, The function q (C,, C) in (2.11). We shall limit ourselves to the com- 
putation of the coefficients qs1r.s (k > i). These coefficients consist solely of terms 
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which are free in C, in expression (2.7) for p_- Let us consider a partiouIar case, 
Let the functions +* 9 in (2* 143 vanish for a = 0, ~~~en~a~g integrals (2,X] in 

accordance with system (2,13), we find that V (0, _v, s) = 0, and that the functions T, 

z can contain terms independent of u only if they satisfy Eq. 

2y Y +” 2sz = 0 (4.0 
Let Y contain the terms 

. . 
is1 g-2 

and z tk zerms 
- srz"g3 - s2z SJ (4.q 

satisfying condition (4, J), 
In this particular case the functions “& in (2,4) and G,, Ga in (2.7) (without the vari- 

ables vi, xs l respectivelyy) vanish for C, = 0. 

Expressions (B 21, (4.3) give us the value of the i~~gr~~d in (2, IO), 

[n +- (Q sin*-1 
- . 

Q fO$? @ -f- s2 sin’ $5 ees2-x $3) Pf-fp 14.9 

where we have omitted trzms which depend on C1 and also terms which depend on powers 
of c different from i + ,t - 1. 

Dividing in (4.4) and integrating over 6 from 0 to 2n, we obtain the value of the co* 
efficient @a~;,0 in (2.11). This means that the following lemma is valid, 

L e m ma 4,1, a] Let the fnnctions cp+ $J?I F, Z in {Z, X3), (2,14) vanish for US = 0. 
Then qrakvo = 0 {k = i,Z,.,.) in(2.11). 

b) Let the functions rp, 9 vanish for u = 0 and let the lowest-order terms in the func- 

tions Y, Z be (4.2), (4,3), The first nonzero coefficient ask,0 in (2.11) is then given by 
an 

8% 
(T&i-l,0 = - m f 

sin= 6 eo& 6 d8 G-Q 

if i is odd and i is even; 
0 

W 
p‘ 

clii+l,O = - 2% s 
sin’ 6 CO&~ 0 d6 (4.6) 

if 8 is even and j is odd; 9s u 

1. * 
% @+j-r],o =“---- 

2wh2 f 
(S>Z sins @-t) #j co&@ + s&a sins5 6 COG G-Q 8) 6@ (‘S.7) 

if (i + 1) is even, 
0 

Corollary. If in attempting to use Formulas (4.5), (4.6) we find that sr = 0 or 
~2 = 0, respectively, then the first nonzero coefficient Q (~++z~,a can bt: found from 

(4.7) by setting sr = 0 or sa = 0. 

Remark, Let Eq. (1.2) have I > 1 zero roots, Lemmas 2, I, 2-B remain valid, 
Terms (3.1) must be considered for each ~~d~~d~a~ variabXe ~~~~~~~ si in order to cbn- 
struct the complete expression (3.2). Dividing in (3.2) and integrating over 6 -from 0 
to 2rt, we obtain the function p (C,,..., Cl) in (2.11). The function q in (2,ll) depends 

on cl,.ssr Cl, C. The condition of Lemma 4.1 must now include the requirement that the 
functions (Ptt__.r Q~, Ip, Y”, Z (or only yr,eeSc VI,* j vanish for ‘rr, = . . . = ub = 0. 

Let us now consider some examples to illustrate how the results of Sects, $4 can be 
used to find the lower-order terms in the expansion of the period T (e, b, 01. As alreae 

noted in Sect. 1, it is necessary to know these terms in order to investigate systems 
closely resembling (X.3), 

6. BxrmpIs8. 1, Thesystem 
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dufdf =2hyzZ (2 f u) - AyS, dyftd = - Xz - hyz f + hy2z2 

has the integrals 
&I&= hy-_z3 (5.1) 

U f It% = c,, l/a f za + u7.2 =: C* 

Applying formula (2.11) and (3.3)(where bh = - h, ah = 0, h = 1) and making the 
substitution Cr -F 4 -P . . . according to (2.12)‘ we obtain 

2. The system 
T = 2nh-’ (1 - ‘12. a + . ..) 

&I&= UZ, dy I at = - 2; - yz, dz 1 at = g + y2 - 3/=& (5.2) 
has the integrals 

u + uy = cr, yz + 22 + ua = ca (5.3) 

Let us transform system f&2),(5.3) in accordance with Lemma 2. I. To this end we 

solve Eqs. --z- yz = 0, y i- y” - J/2 us = 0 

for II, z as functions of u. This yields 

x* (u) = 0, y, (u) = 372u3 + . . . 

Making the substitutions z = z* (u) $r zl, I/ = y* (u) -f- yl in (5.2). (5.3), we obtain 

dy I dt = uzl, dy, f dt = - z1 - y,al, dzl I dt = y, + yla - 3usyl 

u -+ uy1= c,, yr” + zf f 3usy, f us = c2 

From formula (3.3) we find that p (Cl) = “/z Cl3 --I+ . . . , and from formula (4.7). where 
i=j= 1, l a = i, Jz = o, that Qao = l/0, q (C,, C) = l/2 c2 e . . . 

Equating the functions p (C,) and q (C,, C) and making substitution (2.12). we obtain 

T = 2x 11 + ‘la (&a + cej -f . ..I 
3. The system 

au I at = - ya + za, dy I at = - z + 312 uay, dz / at = y - va u% (5.4) 

has the integrals 
lb + yz= c,, y2 + za fi us= ca 

From formula (3.4), where !ya = %, & = - 3/~, o =: 2, we obtain P (C~)=“/&‘~‘P..~ 

Expression (2.11) yields q = - 31, C1C2+.... Equating the functions p (C,), q (C,,C) 

and making substitution (2.12), we obtain 

T = 2n [i - ‘/, 4 (b2 + c”) -& . ..I 

The author is grateful to S. N, Shimanov for his useful remarks. 
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